Your Privacy

This site uses cookies to enhance your browsing experience and deliver personalized content. By continuing to use this site, you consent to our use of cookies.
COOKIE POLICY

RPA Use Case: Monitor Insurer Requirements

RPA Use Case: Monitor Insurer Requirements
Back to insights

It’s not easy to work in revenue cycle management. In addition to every medical practice having a long list of services they provide, whether or not those services are covered by insurance and how much the practice can charge is determined by what insurance plan the customer happens to have. For this RPA Use Case, let’s examine bots that monitor insurer requirements.

For medical practices, keeping up with insurance plan changes is challenging. After all, as of a few years ago there were nearly one thousand different insurance companies in the United States. When we consider that each of those has multiple plans with different levels of coverage, it becomes clear that the average medical office could easily deal with thousands of different plans over the course of a year.

Assuming that wasn’t a large challenge, plans are constantly being updated. What a plan specifically covers and what documentation is required for payment are factors that frequently change. 

As there is no standard for how or when insurance companies report plan changes, medical practices instead find themselves only aware of a problem when a claim is rejected. Worse, it may take several rejections for an office to fully understand that the insurance company has changed the requirements for paying a claim.

This is a solvable problem; one that robotic process automation (RPA) is uniquely capable of fixing. Let’s examine how bots can monitor insurer requirements and the benefits that happen when they do.

Too Much Information

Beyond thousands of providers offering multiple insurance plans is the fact that each has its own documentation requirements, many of which are changing on a weekly, if not daily, basis. As practices look to keep up with the myriad of changes, few can stay ahead and instead find themselves unable to monitor changing insurer requirements.

To be clear, a failure to keep up with insurance claims rates goes directly to a practice’s Clean Claim Rate. As we’ve written about before, Clean Claim Rate (CL-1) is one of the most important KPIs to monitor. If your CL-1 is less than 90%, perhaps this bot can help.

And because unclean claims often go unpaid, this bot should also be considered if your uncompensated care (FM-4) rate is excessive.

Cluster Analysis Through Bots

As we’ve stated, documentation changes happen frequently. And the more common a procedure, the more likely one should expect a claim to be rejected for faulty documentation.

Where documentation requirements have changed, many medical practices would need to encounter multiple rejections before becoming aware that, in fact, requirements have changed. 

With technology, however, a bot can leverage results from cluster analysis. Cluster analysis is a process by which commonalities can be established within data sets. If the same rejection code for the same diagnosis code is observed within a predetermined amount of time, the bot can recognize the pattern and make it aware to the RCM team. Though analysis will be required to find the root cause of the rejection, the repetition of the error becomes a useful tool that points analysts in the proper direction.

Always Working, Even Silently

The type of bot described above would be identified as a monitoring bot. Though it would be impractical for a human to consistently determine commonalities among rejection codes, monitoring bots are running at all times. They evaluate claims 24/7, attempting to see if they’ve been rejected and if those rejections are for a common reason.

In some cases, RPA exists to simplify tedious tasks performed by humans. Monitoring bots, in comparison, are different. They run quietly in the background, only making themselves known when a monitored behavior has been recognized.

Swift recognition of new documentation requirements are key to keeping a low clean claim rate (CL-1) and minimizing the level of uncompensated care (FM-4). For medical practices, a bot that can monitor insurer requirements offers the opportunity for cleaner claims and therefore, faster revenue.

 

Download the Insurer Requirements Use Case

*
Required

Digging In

  • Healthcare

    Streamlining Healthcare Claim Denials for Revenue Recovery

    A robust Denial Notification Authorization (DNA) system that significantly increases the healthcare provider’s overturned denials and revenue.

  • Healthcare

    5 RPA Use Cases in Healthcare

    Fast Deployments for Fast ROI The best way to build momentum with robotic process automation is by deploying proven use cases. Most organizations have hundreds (or more) of bots they could deploy to boost productivity, but when you’re getting started, you’ll want quick wins. Here are five that yield the swiftest results. This eBook contains […]

  • Healthcare

    Automation Creates 24/7 Referral-Acceptance Capabilities for James River Home Health

    A 24/7 automated decision-making system that is 77% faster and accounts for 75% of referral decisions.

  • Healthcare

    RPA in Healthcare | 5 Use Cases for RPA

    If you work in healthcare, you’re familiar with inefficiencies. They exist in all corners of our practices. But it doesn’t have to be that way. Robotic Process Automation (RPA) in healthcare allows professionals to file cleaner claims and generate reimbursement faster. This post will explore use cases for RPA in the Healthcare Market from our […]

  • Healthcare

    RPA Use Case: Clinical Cleanup Bot

    Medical testing plays a crucial role in patients’ early detection, diagnosis, and treatment of conditions. Similarly, clear and correct clinicals are critical to fair and timely insurance claim processing for patients and providers alike. According to Health IT Outcomes, most providers report a 70-85% Clean Claim Rate (CL-1), meaning more work to gain reimbursement from […]

  • Healthcare

    RPA Use Case: Optimize Patient Scheduling

    Though all patient encounters are unique, each begins with an appointment. And because there is a finite number of appointments within a given day, there is a set limit of revenue to be gained. And for all practices, filling the available slots are key to maximizing practice revenue. After all, operating expenses don’t go away […]